Accelerated gradient methods for total-variation-based CT image reconstruction

نویسندگان

  • Jakob Heide Jørgensen
  • Tobias Lindstrøm Jensen
  • Per Christian Hansen
  • Søren Holdt Jensen
  • Emil Y. Sidky
  • Xiaochuan Pan
چکیده

Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is very well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/∼pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the gradient method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Fundamental Characteristics of a Context-specific Reconstruction Method

Objective(s): The latest single-photon emission computed tomography (SPECT)/computed tomography (CT) reconstruction system, referred to as xSPECT Bone™, is a context-specific reconstruction system utilizing tissue segmentation information from CT data, which is called a zone map. The aim of this study was to evaluate theeffects of zone-map enhancement incorporated into the ordered-subset conjug...

متن کامل

Improved Compressed Sensing-Based Algorithm for Sparse-View CT Image Reconstruction

In computed tomography (CT), there are many situations where reconstruction has to be performed with sparse-view data. In sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to limited sampling rate that compromises image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from highly undersampled data. In...

متن کامل

Sparse CT reconstruction based on multi-direction anisotropic total variation (MDATV)

BACKGROUND The sparse CT (Computed Tomography), inspired by compressed sensing, means to introduce a prior information of image sparsity into CT reconstruction to reduce the input projections so as to reduce the potential threat of incremental X-ray dose to patients' health. Recently, many remarkable works were concentrated on the sparse CT reconstruction from sparse (limited-angle or few-view ...

متن کامل

Accelerated Optimization Algorithms for Statistical 3d X-ray Computed Tomography Image Reconstruction

ACCELERATED OPTIMIZATION ALGORITHMS FOR STATISTICAL 3D X-RAY COMPUTED TOMOGRAPHY IMAGE RECONSTRUCTION by Donghwan Kim Chair: Jeffrey A. Fessler X-ray computed tomography (CT) has been widely celebrated for its ability to visualize the anatomical information of patients, but has been criticized for high radiation exposure. Statistical image reconstruction algorithms in X-ray CT can provide impro...

متن کامل

Constrained TpV Minimization for Enhanced Exploitation of Gradient Sparsity: Application to CT Image Reconstruction.

Exploiting sparsity in the image gradient magnitude has proved to be an effective means for reducing the sampling rate in the projection view angle in computed tomography (CT). Most of the image reconstruction algorithms, developed for this purpose, solve a nonsmooth convex optimization problem involving the image total variation (TV). The TV seminorm is the ℓ1 norm of the image gradient magnit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1105.4002  شماره 

صفحات  -

تاریخ انتشار 2011